Aβ Peptide Fibrillar Architectures Controlled by Conformational Constraints of the Monomer

نویسندگان

  • Kristoffer Brännström
  • Anders Öhman
  • Anders Olofsson
چکیده

Anomalous self-assembly of the Aβ peptide into fibrillar amyloid deposits is strongly correlated with the development of Alzheimer's disease. Aβ fibril extension follows a template guided "dock and lock" mechanism where polymerisation is catalysed by the fibrillar ends. Using surface plasmon resonance (SPR) and quenched hydrogen-deuterium exchange NMR (H/D-exchange NMR), we have analysed the fibrillar structure and polymerisation properties of both the highly aggregation prone Aβ1-40 Glu22Gly (Aβ(40Arc)) and wild type Aβ1-40 (Aβ(40WT)). The solvent protection patterns from H/D exchange experiments suggest very similar structures of the fibrillar forms. However, through cross-seeding experiments monitored by SPR, we found that the monomeric form of Aβ(40WT) is significantly impaired to acquire the fibrillar architecture of Aβ(40Arc). A detailed characterisation demonstrated that Aβ(40WT) has a restricted ability to dock and isomerise with high binding affinity onto Aβ(40Arc) fibrils. These results have general implications for the process of fibril assembly, where the rate of polymerisation, and consequently the architecture of the formed fibrils, is restricted by conformational constraints of the monomers. Interestingly, we also found that the kinetic rate of fibril formation rather than the thermodynamically lowest energy state determines the overall fibrillar structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Template induced conformational change of amyloid-β monomer.

Population of aggregation-prone conformers for the monomeric amyloid-β (Aβ) can dramatically speed up its fibrillar aggregation. In this work, we study the effect of preformed template on the conformational distributions of the monomeric Aβ by replica exchange molecular dynamics. Our results show that the template consisting of Aβ peptides with cross-β structure can induce the formation of β-ri...

متن کامل

Structure of ring-shaped Aβ₄₂ oligomers determined by conformational selection.

The oligomerization of amyloid beta (Aβ) peptides into soluble non-fibrillar species plays a critical role in the pathogenesis of Alzheimer's disease. However, it has been challenging to characterize the tertiary and quaternary structures of Aβ peptides due to their disordered nature and high aggregation propensity. In this work, replica exchange molecular dynamics simulations were used to expl...

متن کامل

Human Anti-Aβ IgGs Target Conformational Epitopes on Synthetic Dimer Assemblies and the AD Brain-Derived Peptide

Soluble non-fibrillar assemblies of amyloid-beta (Aβ) and aggregated tau protein are the proximate synaptotoxic species associated with Alzheimer's disease (AD). Anti-Aβ immunotherapy is a promising and advanced therapeutic strategy, but the precise Aβ species to target is not yet known. Previously, we and others have shown that natural human IgGs (NAbs) target diverse Aβ conformers and have th...

متن کامل

Conformational differences between two amyloid β oligomers of similar size and dissimilar toxicity.

Several protein conformational disorders (Parkinson and prion diseases) are linked to aberrant folding of proteins into prefibrillar oligomers and amyloid fibrils. Although prefibrillar oligomers are more toxic than their fibrillar counterparts, it is difficult to decouple the origin of their dissimilar toxicity because oligomers and fibrils differ both in terms of structure and size. Here we r...

متن کامل

Ca(2+) enhances Aβ polymerization rate and fibrillar stability in a dynamic manner.

Identifying factors that affect the self-assembly of Aβ (amyloid-β peptide) is of utmost importance in the quest to understand the molecular mechanisms causing AD (Alzheimer's disease). Ca(2+) has previously been shown to accelerate both Aβ fibril nucleation and maturation, and dysregulated Ca(2+) homoeostasis frequently correlates with development of AD. The mechanisms regarding Ca(2+) binding...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011